Preliminary communication

$\left[\left[\operatorname{Ir}(\mathrm{CO})_{2} \mathrm{PPh}_{3} \mathrm{I}_{2}-\mu-\mathrm{HC}_{2} \mathrm{Ph}\right\}:\right.$ AN ALKYNE DERIVATIVE OF $\left[\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right]_{2}$

MARIA ANGOLETTA, PIER L. BELLON, FRANCESCO DEMARTIN, and MIREILA SANSONI
Istituto di Chimica Generale, via G. Venezian 21, 20133 Milano (Italy)
(Received December 15th, 1980)

Summary

The reaction of $\left[\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right]_{2}$ with phenylacetylene in boiling $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yields the dinuclear iridium complex $\left\{\left[\operatorname{Ir}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right]_{2}-\mu-\mathrm{HC}_{2} \mathrm{Ph}\right\}$. The molecule has an approximate C_{s} symmetry and contains a quasi-tetrahedral moiety $\mathrm{Ir}_{2} \mathrm{C}_{2}$ involving two alkyne carbon atoms; the \mathbf{C} - \mathbf{C} distance in the μ-bonded acetylenic ligand $1.412(17) \AA$ is the longest ever observed in dimetal- μ-alkyne complexes.

We are presently studying the products of reactions of substituted acetylenes with $\left[\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right]_{2}$ (I) [1] and report below preliminary results on $\left\{\left[\mathrm{Ir}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right]_{2}-\mu-\mathrm{HC}_{2} \mathrm{Ph}\right\}$ (II). This compound is obtained in a yield of ca. 40% when I is treated for about 5 h with phenylacetylene (molar ratio 1/2) in boiling $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and can be precipitated out by adding ethanol to the reaction mixture. Crystals suitable for diffraction studies can be obtained by slow diffusion of ethanol into a solution of II in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Analytical, spectroscopic and çrystal data. Found: C, 51.10; H, 3.20; P, 5.28. $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{Ir}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$ ($M=1123.18$); calcd.: $\mathrm{C}, 51.33 ; \mathrm{H}, 3.23 ; \mathrm{P}, 5.52 \%$); IR bands: $\nu(C O) 2000(\mathrm{~s}), 1970(\mathrm{~ms}), 1950(\mathrm{~s}), 1930(\mathrm{~m}) \mathrm{cm}^{-1}$; yellow triclinic prisms, space group $P \overline{1}, a$ 18.491(5), b 13.644(4), c 9.901(4) $\AA, ~ a ~ 114.81(2)$, β 88.66(4), $\gamma 101.06(3)^{\circ}, V 2221 \AA^{3}, D_{\mathrm{m}} 1.75(2) \mathrm{g} \mathrm{cm}^{-1}, Z=2, D_{\mathrm{c}}$ $1.68 \mathrm{~g} \mathrm{~cm}^{-1 *}$.

The structure, solved by inspection of Patterson and Fourier syntheses, was refined by block diagonal least-squares method using 4877 independent reflections, collected with graphite-monochromated Mo- K_{α} radiation, having $I \geqslant$

[^0]$3 \sigma(I)$, with phenyl rings of the phosphine ligands constrained to $D_{6 h}$ symmetry (C-C $1.392 \AA$). Final reliability indices are $R=0.037$ and $R_{\mathrm{w}}=0.048$. In the final least squares cycles the contribution of all the hydrogen atoms was included; the position of the hydrogen atom of the alkyne ligand was detected in a difference Fourier map and refined by assigning it a fixed thermal factor.

The structure of II, which seems to be the first example of alkyne derivative of a dinuclear iridium compound, is shown in Fig. 1. The crystal consists of a normal packing of such molecules with no unusual intermolecular contacts. The figure clearly shows an approximate C_{s} symmetry with the mirror plane passing through the midpoint of the Ir-Ir bond and containing the

Fig. 1. ORTEP view of $\left\{\left[\mathrm{Ir}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right]_{2}-\mu-\mathrm{HC}_{2} \mathrm{Ph}\right\}$. Relevant distances and angles within the molecule are: $\operatorname{Ir}(1)-\operatorname{Ir}(2) 2.691(1), \operatorname{Ir}(1)-\mathrm{P}(1) \mathbf{2 . 3 2 0}(2)$. $\operatorname{Ir}(2)-\mathbf{P (2)} 2.319(3)$, mean $\operatorname{Ir}-\mathrm{C}($ carbonyl $1.902(38)$, mean C-O 1.146(27), mean Ir-C(alkine) 2.118(7), C(5)-C(6) 1.412(17), C(5)-H 0.98(13) A: $\mathbf{C}(6)-\mathrm{C}(5)-\mathrm{H}$ 147.4(6.4). $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) 137.1(1.1)^{\circ}$.
alkyne ligand. Curiously, this symmetry involves the conformation of the PPh_{3} ligands. Each metal atom has a distorted octahedral coordination: an equatorial plane is defined by two carbonyl groups and the μ-alkyne ligand, a phosphine group and the other metal atom being in the apical positions. The quasitetrahedral moiety $\mathrm{Ir}_{2} \mathrm{C}_{2}$ possesses $C_{2 \nu}$ symmetry, the four bonds from iridium atoms to the acetylenic carbon atoms being equal within one e.s.d. The $\operatorname{Ir}(1)-\operatorname{Ir}(2)$ bond length of 2.691(1) \AA, agrees with the value of 2.737(1) recently found in $\left[\operatorname{Ir}(\mathrm{CO})_{2}\left\{\mathrm{C}_{4}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{4} \operatorname{Ir}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\right][2]$, and with a number of values found in di- and polynuclear iridium compounds [3]. The $C-C$ bond length, $1.412(17) \AA$, in the alkyne ligand seems to be the longest ever observed in $\mathrm{M}_{2}-\mu-\left(\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)$ complexes [4-8].

We thank the Italian C.N.R. for financial support.

References

1 L. Malatesta, M. Angoletta, and G. Caglio, J. Organometal. Chem., 73 (1974) 265.
2 M. Angoletta, P.L. Bellon, F. Demartin, and M. Manassero, J. Chem. Soc., Dalton Trans., in press.
3 M. Angoletta, G. Ciany, M. Manassero, and M. Sansoni, J. Chem. Soc., Chem. Commun., (1973) 789: M.R. Churchill, and J.P. Hutchinson, Inorg. Chem., 17 (1978) 3528; P. Chini, G. Cianı, L. Garlaschelli. M. Manassero. S. Martinengo, A. Sıron, and F. Canziani, J. Organometal. Chem., 152 (1978) C35.
4 W.G. Sly, J. Amer. Chem. Soc., 81 (1959) 18.
5 O.S. Mills, and B.W. Shaw, J. Organometal. Chem., 11 (1968) 595.
6 E. Ban, P.T. Cheng, T. Jack, S C. Nyburg, and J. Powell, J. Chem. Soc., Chem. Commun., (1973) 368
7 F.A. Cotton, J.D. Jamerson, and B.R. Stults, J. Amer. Chem. Soc., 98 (1976) 1774.
8 M.A. Bennett, R.N. Johnson, G.B. Robertson, T.W. Tumey, and P.O. Whimp, Inorg. Chem., 15 (1976 97.

[^0]: *The compound actually crystallzes with some solvent ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) which, however, is heavily drsordered and cannot be refined. The ratio between the complex molecule and the solvent is about $2 / 1$ as can be seen from D_{m}, which has a value intermediate between that reported here, computed without solvent, and that computed for a molar ratio $1 / 1$, the latter bemg $D_{c}=1.80 \mathrm{~g} \mathrm{~cm}^{-1}$.

